Forklift Starters

Starter for Forklift - Today's starter motor is normally a permanent-magnet composition or a series-parallel wound direct current electrical motor with a starter solenoid installed on it. As soon as current from the starting battery is applied to the solenoid, mainly through a key-operated switch, the solenoid engages a lever that pushes out the drive pinion which is positioned on the driveshaft and meshes the pinion with the starter ring gear that is found on the engine flywheel.

When the starter motor starts to turn, the solenoid closes the high-current contacts. Once the engine has started, the solenoid consists of a key operated switch which opens the spring assembly to pull the pinion gear away from the ring gear. This particular action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This permits the pinion to transmit drive in just one direction. Drive is transmitted in this manner via the pinion to the flywheel ring gear. The pinion remains engaged, for instance in view of the fact that the driver did not release the key as soon as the engine starts or if there is a short and the solenoid remains engaged. This causes the pinion to spin independently of its driveshaft.

The actions mentioned above would stop the engine from driving the starter. This significant step prevents the starter from spinning so fast that it will fly apart. Unless modifications were done, the sprag clutch arrangement would stop making use of the starter as a generator if it was used in the hybrid scheme discussed prior. Normally an average starter motor is designed for intermittent use which will prevent it being used as a generator.

Thus, the electrical components are meant to work for roughly under thirty seconds in order to avoid overheating. The overheating results from very slow dissipation of heat because of ohmic losses. The electrical components are designed to save weight and cost. This is the reason most owner's guidebooks intended for vehicles suggest the driver to stop for a minimum of ten seconds right after each ten or fifteen seconds of cranking the engine, when trying to start an engine which does not turn over immediately.

During the early part of the 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Previous to that time, a Bendix drive was used. The Bendix system operates by placing the starter drive pinion on a helically cut driveshaft. As soon as the starter motor starts spinning, the inertia of the drive pinion assembly enables it to ride forward on the helix, hence engaging with the ring gear. As soon as the engine starts, the backdrive caused from the ring gear allows the pinion to surpass the rotating speed of the starter. At this instant, the drive pinion is forced back down the helical shaft and hence out of mesh with the ring gear.

The development of Bendix drive was made in the 1930's with the overrunning-clutch design referred to as the Bendix Folo-Thru drive, developed and launched during the 1960s. The Folo-Thru drive has a latching mechanism together with a set of flyweights within the body of the drive unit. This was much better because the typical Bendix drive utilized to disengage from the ring as soon as the engine fired, though it did not stay running.

The drive unit if force forward by inertia on the helical shaft once the starter motor is engaged and begins turning. Next the starter motor becomes latched into the engaged position. As soon as the drive unit is spun at a speed higher than what is attained by the starter motor itself, like for instance it is backdriven by the running engine, and then the flyweights pull outward in a radial manner. This releases the latch and permits the overdriven drive unit to become spun out of engagement, thus unwanted starter disengagement could be prevented previous to a successful engine start.